Skip to main content

Bounds on the recurrence probability in periodically-driven quantum systems

Abstract

Periodically-driven systems are ubiquitous in science and technology. In quantum dynamics, even a small number of periodically-driven spins leads to complicated dynamics. Hence, it is of interest to understand what constraints such dynamics must satisfy. We derive a set of constraints for each number of cycles. For pure initial states, the observable being constrained is the recurrence probability. We use our constraints for detecting undesired coupling to unaccounted environments and drifts in the driving parameters. To illustrate the relevance of these results for modern quantum systems we demonstrate our findings experimentally on a trapped-ion quantum computer, and on various IBM quantum computers. Specifically, we provide two experimental examples where these constraints surpass fundamental bounds associated with known one-cycle constraints. This scheme can potentially be used to detect the effect of the environment in quantum circuits that cannot be classically simulated. Finally, we show that, in practice, testing an n-cycle constraint requires executing only (root n) cycles, which makes the evaluation of constraints associated with hundreds of cycles realistic.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2022
Journal
Quantum
Volume
6
Date Published
04/2022

Contributors

Groups